메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍세훈 (차의과학대학교) 이동원 (한성대학교)
저널정보
한국지역사회간호학회 지역사회간호학회지 지역사회간호학회지 제30권 제2호
발행연도
2019.6
수록면
130 - 140 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: The aim of this study is to explore levels of suicidal ideation and identify subgroups of high suicidal risk among the depressed elderly in Korea. Methods: A descriptive cross-sectional design was adopted on secondary data from the 6th (1st year) Korean national health and nutrition examination survey (KNHANES). A total of 239 depressed elders aged 60 or over who participated in the KNHANES. The prevalence of suicidal ideation and its related factors, including sociodemographic, physical, psychological characteristics and quality of life (EQ-5D index) were examined. Descriptive statistics and a decision tree analysis were performed using the SPSS/WIN 23.0 and SPSS Modeler 14.2 programs. Results: Of the depressed elderly, 28.9% had suicidal ideation. Three groups with high suicidal ideation were identified. Predictive factors included perceived stress level, household income level, quality of life and restriction of activity. In the highest risk group were those depressed elderly with moderate and low levels of stress, less than .71 of EQ-5D index and restriction of activity, and 80.0% of these participants had suicidal ideation. The accuracy of the model was 80.8%, its sensitivity 85.9%, and its specificity 68.1%. Conclusion: Multi-dimensional intervention should be designed to decrease suicide among the depressed elderly, particularly focusing on subgroups with high risk factors. This research is expected to contribute itself to the policy design and solution building in the future as it suggests policy implications in preventing the suicide of the depressed elderly.

목차

서론
연구방법
연구결과
논의
결론 및 제언
REFERENCES

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0