메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
나용석 (충북대학교) 손현욱 (충북대학교) 김형원 (Chungbuk National University)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제3호
발행연도
2022.3
수록면
355 - 366 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 프로그램 가능한 구조를 사용하여 재구성이 가능하고 저 전력 초소형의 장점을 모두 제공하는 인공지능 가속기를 위한 마이크로코드 기반 뉴럴 네트워크 가속기 컨트롤러를 제안한다. 대상 가속기가 다양한 뉴럴 네트워크 모델을 지원하도록 마이크로코드 컴파일러를 통해 뉴럴 네트워크 모델을 마이크로코드로 변환하여 가속기의 메모리 접근과 모든 연산기를 제어할 수 있다. 200MHz의 System Clock을 기준으로 설계하였으며, YOLOv2-Tiny CNN model을 구동하도록 컨트롤러를 구현하였다. 객체 감지를 위한 VOC 2012 dataset 추론용 컨트롤러를 구현할 경우 137.9ms/image, mask 착용 여부 감지를 위한 mask detection dataset 추론용으로 구현할 경우 99.5ms/image의 detection speed를 달성하였다. 제안된 컨트롤러를 탑재한 가속기를 실리콘칩으로 구현할 때 게이트 카운트는 618,388이며, 이는 CPU core로서 RISC-V (U5-MC2)를 탑재할 경우 대비 약 65.5% 감소한 칩 면적을 제공한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험결과
Ⅳ. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001159195