메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이은우 (동국대학교) 이원부 (동국대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제22권 제3호
발행연도
2022.3
수록면
81 - 93 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
주식 투자는 가장 널리 알려진 재테크 방법들 중 하나지만 실제 투자를 통해 수익을 얻기는 쉽지 않기 때문에 과거부터 효과적이고 안정적인 투자 수익을 얻기 위한 다양한 투자 전략들이 고안되고 시도되어 왔다. 그중 변동성 돌파 전략(Volatility Breakout)은 일일 단위로 일정 수준 이상의 범위를 뛰어넘는 강한 상승세를 돌파 신호로 파악하여 상승하는 추세를 따라가며 일 단위로 빠르게 수익을 실현하는 전략으로 널리 쓰이고 있는 단기 투자 전략들 중 하나이다. 그러나 주식 종목마다 가격의 추이나 변동성의 정도가 다르며 동일한 종목이라도 시기에 따라 주가의 흐름이 일정하지 않아 주가를 예측하고 정확한 매매 시점을 찾아내는 것은 매우 어려운 문제이다. 본 논문에서는 단순히 종가 또는 장기간에 걸친 수익률을 예측하는 기존 연구 방법들과는 달리 단기간에 수익을 실현할 수 있는 주식과 같은 시계열 데이터 분석에 적합한 양방향 장단기 메모리 심층 신경망을 이용하여 변동성 돌파 전략 기반 매매 시의 수익률을 예측하여 주식을 매매하여 방법을 제안한다. 이렇게 학습된 모델로 테스트 데이터에 대하여 실제 매매를 가정하여 실험한 결과 기존의 장단기 메모리 심층 신경망을 이용한 종가 예측 모델보다 수익률과 안정성을 모두 상회하는 결과를 확인할 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구 방법
Ⅳ. 성능 평가
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-310-001170702