메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김동영 (고려대학교) 전상훈 (고려대학교) 류민수 (고려대학교) 김휘강 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제2호
발행연도
2022.4
수록면
417 - 437 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Fuzzing에서 seed corpus의 품질은 취약점을 보다 빠르게 찾기 위해서 중요한 요소 중 하나라고 할 수 있다. 이에 dynamic taint analysis와 symbolic execution 기법 등을 활용하여 효율적인 seed corpus를 생성하는 연구들이 진행되어왔으나, 높은 전문 지식이 요구되고, 낮은 coverage로 인해 광범위한 활용에 제약이 있었다. 이에 본 논문에서는 자연어 처리 모델인 Sequence-to-Sequence 모델을 기반으로 seed corpus를 생성하는 DDRFuzz 시스템을 제안한다. 본 논문에서 제안하는 시스템은 멀티미디어 파일을 입력값으로 하는 5개의 오픈소스 프로젝트를 대상으로 관련 연구들과 비교하여 효과를 검증하였다. 실험 결과, DDRFuzz가 coverage와 crash count 측면에서 가장 뛰어난 성능을 나타냄을 확인할 수 있었고, 또한 신규 취약점을 포함하여 총 3개의 취약점을 탐지하였다.

목차

요약
ABSTRACT
I. 서론
II. 배경
III. 관련 연구
IV. DDRFuzz
V. 실험 결과
VI. 향후 연구
VII. 결론
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001127824