메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이성배 (경희대학교) 이민석 (경희대학교) 김규헌 (경희대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제3호
발행연도
2022.5
수록면
318 - 331 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 하드웨어 연산 장치와 소프트웨어 기반 프레임워크의 발전으로 딥러닝 네트워크를 활용한 머신 태스크가 다양한 산업 분야 및 개인 IoT 장비에서의 활용이 기대되고 있다. 그러나 딥러닝 네트워크를 구동하기 위한 장치의 고비용 문제와 서버에서 머신 태스크 결과만을 전송받을 때 사용자가 요구하는 결과를 받지 못할 수 있다는 제한 사항을 극복하기 위하여 Collaborative Intelligence (CI)에서는 피처 맵의 전송을 그 해결 방법으로 제시하였다. 본 논문에서는 CI 패러다임을 지원하기 위하여 방대한 데이터 크기를 갖는 피처 맵의 효율적인 압축 방법을 실험을 통해 분석 및 제시하였다. 해당 방법은 전통적인 비디오 코덱에서의 압축 효율을 높이기 위하여 피처 맵의 재정렬을 적용하여 중복성을 높였으며, 정지 영상 압축 포맷과 동영상 압축 포맷을 동시에 활용하여 압축 효율을 높이고 머신 태스크의 성능을 유지하는 피처 맵 방법을 제시하였다. 본 논문에서는 이와 같은 방법의 분석을 통해 MPEG-VCM의 피처 압축 앵커 대비 BPP와 mAP의 BD-rate에서 14.29%의 성능이 향상됨을 검증하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 배경 기술
Ⅲ. 피처 프레임 구성 방법에 따른 압축 효율 및 머신 태스크 성능 분석
Ⅳ. 결론
참고문헌 (References)

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0