메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정성훈 (부경대학교) 공경보 (부경대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제3호
발행연도
2022.5
수록면
437 - 450 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
생성적 적대 신경망(GAN, Generative Adversarial Networks)는 이미지 생성 분야에서 주목할 만한 발전을 이루었다. 하지만 큰 데이터 셋에서 불안정한 모습을 보인다는 한계 때문에 다양한 응용 분야에 쉽게 적용하기 어렵다. 단일 이미지 생성적 적대 신경망은 한장의 이미지의 내부 분포를 잘 학습하여 다양한 영상을 생성하는 분야이다. 큰 데이터셋이 아닌 단 한장만 학습함으로써 안정적인 학습이 가능하며 이미지 리타겟팅, 이미지 조작, super resolution 등 다양한 분야에 활용 가능하다. 본 논문에서는 SinGAN, ConSinGAN, InGAN, DeepSIM, 그리고 One-Shot GAN 총 다섯 개의 단일 이미지 생성적 적대 신경망을 살펴본다. 우리는 각각의 단일 이미지 생성적 적대 신경망 모델들의 성능을 비교하고 장단점을 분석한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 딥러닝 기반 단일 이미지 생성적 적대 신경망 기법 비교 분석
Ⅲ. 네트워크 성능 비교
Ⅳ. 결론
참고문헌 (References)

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0