메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배상중 (배재대학교) 김민규 (배재대학교) 정회경 (배재대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제6호
발행연도
2020.6
수록면
700 - 705 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
생성적 적대 신경망(GAN, Generative Adversarial Network)은 두 개의 신경망을 대립하여 이미지를 생성하는 방법이다. 이미지를 생성할 때 랜덤으로 생성한 노이즈를 재배열하여 이미지를 생성하는데 이러한 방법으로 생성된 이미지는 노이즈에 따라 생성이 잘 이루어지지 않고, 이미지의 픽셀이 적은 경우 제대로 된 이미지를 생성하기 어렵다는 문제점이 발생할 수 있다. 또한 데이터 분류에서 데이터가 쌓이는 속도와 크기가 증가되는데 이들을 라벨링하는데는 많은 어려움이 있다. 본 논문에서는 이를 해결하기 위해 랜덤으로 생성하던 노이즈에 실제 데이터를 사용하여 노이즈를 생성하고 이를 기반으로 이미지를 생성하는 기법을 제안한다. 제안하는 시스템은 기존에 있는 이미지를 기반으로 하는 이미지를 생성하는 것이므로 좀 더 자연스러운 이미지의 생성이 가능하다는 것을 확인하였고 이를 학습에 이용할 경우 기존의 생성적 적대 신경망을 사용한 방법보다 더 높은 적중률을 보임을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 시스템 설계
Ⅳ. 시스템 구현
Ⅴ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000883774