메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
배세진 (부산외국어대학교) 이정수 (부산외국어대학교) 백남균 (부산외국어대학교)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2022년도 춘계종합학술대회 논문집 제26권 제1호
발행연도
2022.5
수록면
377 - 380 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
앱(App)이라 불리는 응용프로그램은 모바일 기기 등에 다운받아 사용 가능하다. 그 중 안드로이드(Android) 기반 앱은 오픈소스 기반으로 구현되어 누구나 악용 가능하다는 단점이 있지만, 아주 일부분의 소스코드를 공개하는 iOS와는 달리 안드로이드는 오픈소스로 구현되어 있기 때문에 코드를 분석할 수 있다는 장점도 있다. 하지만 오픈소스 기반의 안도로이드 앱은 누구나 소스코드 변경에 참여 가능하기 때문에 그만큼 악성코드가 많아지고 종류 또한 다양해질 수밖에 없다. 단기간에 기하급수적으로 늘어나는 악성코드는 사람이 일일이 탐지하기 어려워 AI를 활용하여 악성코드를 탐지하는 기법을 사용하는 것이 효율적이다. 기존 대부분의 악성 앱 탐지 방안은 Feature를 추출하여 악성 앱을 탐지하는 방안이 대부분이다. 따라서 Feature 추출 후 학습에 사용할 최적의 Feature를 선정(Selection)하는 3가지 방안을 제안한다. 마지막으로, 최적의 Feature로 모델링 하는 단계에서 단일 모델 이외에도 앙상블 기법을 사용한다. 앙상블 기법은 이미 여러 연구에서 나와 있듯이 단일 모델의 성능을 뛰어넘는 결과를 보여주고 있다. 따라서 본 논문에서는 안드로이드 앱(App) 기반 악성코드 탐지 최적의 Feature 선정과 학습모델을 구현하는 방안을 제시한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 방안
Ⅳ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001357937