메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이지원 (인천대학교) 이향숙 (인천대학교)
저널정보
한국무역학회 무역학회지 貿易學會誌 第47卷 第2號
발행연도
2022.4
수록면
121 - 132 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aims to find out the ESG management keywords in the logistics industry through social network analysis using news article and sustainable management reports. In recent years, global climate change and Covid-19 have spurred companies to step up their new management system called ESG management. ESG is a combination of Environment, Social, and Governance. In the past, companies" financial performance was the most important, but in the current investment market, the movement to reflect ESG management factors in investment decisions is strengthening. This study aims to find out degree centrality, betweenness centrality, and closeness centrality through social network analysis after collecting related keywords to derive ESG management issues of logistics companies. This study collected 2,359 news articles searched under the keywords "ESG", "Logistics". In addition, data on ESG activities were also used for analysis by referring to the sustainable management reports of logistics companies. As a result of the analysis of degree centrality, it was found that ESG management of logistics companies is in progress, focusing on small enterprises and eco-friendly keywords, and is concentrated on social responsibility and eco-friendly activities. In the betweenness centrality analysis, logistics companies such as HMM and CJ Logistics were derived in a high ranking. In the closeness centrality analysis, eco-friendly keywords topped the list, while the number of keywords related to governance was relatively small, suggesting that logistics companies need to improve their governance structure.

목차

Abstract
Ⅰ. 서론
Ⅱ. 선행연구
Ⅲ. 연구모형
Ⅳ. 연구결과
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-324-001528420