메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jongsung Kang (Seoul National University) Taewhan Kim (Seoul National University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.16 No.2
발행연도
2022.6
수록면
79 - 87 (9page)
DOI
10.5626/JCSE.2022.16.2.79

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We propose an acceleration technique for processing multiplication operations using stochastic computing (SC) in on-device neural networks. Recently, multiplexor driven finite state machine (MUX-FSM)-based SCs, which employ a MUX controlled by an FSM to generate a (repeated but short) bit sequence of a binary number to count up for a multiplication operation, considerably reduce the processing time of MAC operations over the traditional stochastic number generator (SNG) based SC. Nevertheless, the existing MUX-FSM-based SCs still do not meet the multiplication processing time required for the wide adoption of on-device neural networks in practice even though it offers a very economical hardware implementation. In this respect, this work proposes a solution that speeds up the conventional MUX-FSM-based SCs. Precisely, we analyze the bit counting pattern produced by MUX-FSM and replace the counting redundancy by shift operation, resulting in a shortening of the length of the required bit sequence significantly, together with analytically formulating the number of computation cycles. Through experiments, we have shown that the enhanced SC technique can reduce the processing time by 44.1% on average over the conventional MUX-FSM-based SCs.

목차

Abstract
I. Introduction
II. PRELIMINARY
III. THE PROPOSED MUX-FSM-BASED SC
IV. EXPERIMENTAL RESULTS
V. CONCLUSION
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0