메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김장연 (Kangwon National University) 김태경 (Kangwon National University) 조현종 (Kangwon National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제9호
발행연도
2022.9
수록면
1,302 - 1,307 (6page)
DOI
10.5370/KIEE.2022.71.9.1302

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
When the apple disease occurs, accurate and rapid control must be carried out. If appropriate measures are not taken, the spread of the disease and secondary damage such as soil contamination caused by pesticides may occur. In this paper, the apple disease classification system that can classify the type of disease as well as normal from image is proposed. The apple disease classes consists of Marssonina blotch, Fire Blight, Valsa cacker, Alernaria blotch, and Bitter rot. Xception network was used to extract and learn features from image. Google"s AutoAugment CIFAR-10 policy is used to increase apple disease data to increase network’s classification performance. Then, in order to increase the reliability of data, the augmented data was selected by model trained only with original data. Gaussian, Salt-and-pepper, Speckle and Poisson noise were added to the test data to show good performance for noisy input data. We compared the performance of the model trained with original data and augmented data selected by threshold value 0.9. As a result, the proposed study showed a performance improvement of up to 6% in F1-Score.

목차

Abstract
1. 서론
2. 연구방법
3. 연구결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-560-001689148