메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이경수 (경희대학교) 박예린 (경희대학교) 신윤종 (경희대학교) 손권상 (인하대학교) 권오병 (경희대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제28권 제3호
발행연도
2022.9
수록면
139 - 159 (21page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
코로나19 이후 건강기능식품의 관심이 높아짐에 따라 수입 식품 안전성 검사의 중요성도 더욱 커지고 있다. 그러나 매년 증가하는 건강기능식품 수입량과 반대로 식품 검사에 필요한 예산과 인력은 한계점에 다다르고 있다. 따라서 본 연구의 목적은 수출입 식품 중 건강기능식품을 대상으로 데이터의 특성을 살펴보고, 판별의 정확성과 결과의 설명 가능성을 고려하여 효율적으로 부적합 식품을 탐지할 수 있는 기계학습 모델 기반 자동화 시스템 설계 방안을 제시하는 것이다. 이를 위해 첫째, 부적합 판정에 영향을 미치는 식품 검사 데이터로부터 부적합 판정에 유의한 파생변수를 생성하며, 둘째, 건강기능식품 수출입 검사 데이터에 대한 탐색적 분석을 통해 클래스 불균형과 비선형성 등을 고려하여 영향변수를 선정하며, 셋째, 다양한 머신러닝 기법을 적용하여 모델 별 성능과 해석가능성에 대해 비교를 수행하고자 한다. 성능 분석 결과, 앙상블 모델이 가장 우수하였으며, 본 연구에서 제안하는 파생변수 및 모델이 수출입 식품 검사에서 활용하고 있는 시스템에 도움이 될 수 있음을 확인하였다.

목차

1. 서론
2. 관련 연구
3. 연구 방법
4. 결과
5. 토의 및 결론
참고문헌(References)
Abstract

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-003-000128128