메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권재윤 (상명대학교) 남상백 (한양대학교)
저널정보
한국체육과학회 한국체육과학회지 한국체육과학회지 제31권 제5호 (인문사회과학 편)
발행연도
2022.10
수록면
563 - 578 (16page)
DOI
10.35159/kjss.2022.10.31.5.563

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study was to analyze the overall perception of sports human rights violations and related keyword using big data analysis. As a keyword for data search, keyword results for sports human rights violations in 2019-2020 and 2020-2021, In order to utilize big data analysis and text mining techniques, news article search information, which is commonly used by the public, was used. A total of 16 media and broadcasting companies (11 central and 5 broadcasting companies) were selected as keyword collection and analysis channels. Top 30 keyword were analyzed by performing N-gram network analysis and word cloud visualization step by step. The main analysis results of the study were as follows. First, the top 10 words extracted based on the keyword of sports human rights violations 2019-2020, Sook-Hyun Choi (1,389), sports field (1,249), Korea Sports Association (1,145), coach (1,136), players (1,086), perpetrator (892), triathlon (754), Gyeongju City Hall (690), victim (688), the Fair Trade Commission (566). Second, the top 10 words extracted based on the keyword of sports human rights violations 2010-2021, Sports field (1,260), coash (1,176), victims (1,125), student athletes (1,037), bullying (949), perpetrators (805), Korea Sports Association (729), human rights violations (618), national team (612), Da-Young, Lee (595). The 2019-2020 words were exposed centered on keywords related to the case of Sook-hyun, Choi and Suk-hee, Shim and it can be seen that the 2020-2021 words related to school violence and sports human rights violations appeared in earnest.

목차

Abstract
Ⅰ. 서론
Ⅱ. 연구방법
Ⅲ. 결과
Ⅳ. 논의
Ⅴ. 결론 및 제언
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0