메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
견민수 (한양대학교) 백승한 (한양대학교) 박종일 (한양대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 추계학술대회
발행연도
2022.11
수록면
95 - 98 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
아날로그 게이지는 여전히 많은 산업 시설에서 사용되고 있지만, 게이지 값을 사람이 수동으로 읽기 때문에 정확히 측정하기 위해 많은 시간이 소모가 되는 문제점이 있다. 이러한 이유로 최근에는 합성곱 신경망을 사용하여 아날로그 게이지 값을 자동으로 인식하는 연구가 진행되고 있다. 그러나 대부분의 선행연구들은 게이지가 촬영된 영상을 그대로 입력으로 사용하고 있으며, 이러한 방법은 사람이 게이지를 읽는 과정을 고려하였을 때 불필요한 부분이 많다. 본 논문에서는 게이지 전체 이미지를 학습에 사용하지 않고, 게이지의 특정 이미지 패치 기반으로 아날로그 게이지 값을 인식하는 방법을 제안한다. 제안하는 방법은 게이지의 중심, 눈금의 최소, 최대, 지침의 좌표를 기반으로 이미지 패치를 생성하고 채널 축으로 병합하여 학습을 진행하였으며, 최종적으로 게이지의 각도를 계산한다. 이는 게이지의 평균 각도 오차를 통해 제안한 방법이 게이지 값을 인식하는데 우수한 성능이 보였으며, 게이지 이미지에 장애물이 있는 경우에도 게이지 값을 인식할 수 있음을 확인하였다.

목차

요약
1. 서론
2. 제안하는 방법
3. 실험 구성 및 학습
4. 실험 결과 및 분석
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0