메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재우 (Hongik University) 김영민 (Hongik University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제4호
발행연도
2022.12
수록면
213 - 218 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
격자 기반 암호화는 최악의 경우를 기반으로 한 강력한 보안, 비교적 효율적인 구현 및 단순성을 누리기 때문에 포스트 양자 암호화 방식 중 가장 실용적인 방식이다. 오류가 있는 링 학습(R-LWE)은 격자 기반 암호화(LBC)의 공개키암호화(Public Key Encryption: PKE) 방식이며, R-LWE의 가장 중요한 연산은 링의 모듈러 다항식 곱셈이다. 본 논문은 R-LWE 암호 시스템의 중간 보안 수준의 매개 변수 집합을 대상으로 하여 근사 컴퓨팅(Approximate Computing: AC) 기술을 기반으로 한 모듈러 곱셈기를 최적화하는 방법을 제안한다. 먼저 복잡한 로직을 간단하게 구현하는 방법으로 LUT을 사용하여 근사 곱셈 연산 중 일부의 연산 과정을 생략하고, 2의 보수 방법을 활용하여 입력 데이터의 값을 이진수로 변환 시 값이 1인 비트의 개수를 최소화하여 필요한 덧셈기의 개수를 절감하는 총 두 가지 방법을 제안한다. 제안된 LUT 기반의 모듈식 곱셈기는 기존 R-LWE 모듈식 곱셈기 대비 속도와 면적 모두 9%까지 줄어들었고, 2의 보수 방법을 적용한 모듈식 곱셈기는 면적을 40%까지 줄이고 속도는 2% 향상되는 것으로 나타났다. 마지막으로 이 두 방법을 모두 적용한 최적화된 모듈식 곱셈기의 면적은 기존대비 43%까지 감소하고 속도는 10%까지 감소하는 것으로 나타났다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험 및 결과
Ⅳ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-056-000303620