메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yudi Priyadi (Telkom University) Krishna Kusumahadi (Telkom University) Pramoedya Syachrizalhaq Lyanda (Telkom University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.22 No.4
발행연도
2022.12
수록면
373 - 381 (9page)
DOI
10.5391/IJFIS.2022.22.4.373

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Systems thinking is a discipline for understanding wholeness and frameworks based on the changing patterns of the interconnectedness of the whole system. The storytelling of a system is a description of the mental model of an individual in describing the state of the environment. There are differences in the interpretation of the system description. This difference occurs because each individual has a different level of systems thinking in terms of experience, learning process, insight, intuition, and assumption in understanding system interactions. This study aims to extract data in the description of the storytelling of a systems thinking case by performing text mining and similarity to identify and find a variable to form causal loop diagrams. Based on the results of this study, there are results in the data extraction from the description of storytelling for the systems thinking case. The conclusions of this study are as follows: First, processing the five documents has successfully identified two documents with the highest similarity value, such as d1 and d3. Second, based on the cosine similarity calculation results and the results of the similarity value, there is a value closest to 1, such as 0.0913166. This value is at the d1 and d3 positions. Third, it produces a variable approach in the form of a group of words used in modeling thinking systems based on a connectedness value greater than 0.50.

목차

Abstract
1. Introduction
2. Related Works
3. Fundamental Ideas for the IdVar4CL Method
4. Datasets
5. Methodology
6. Result and Discussion
7. Conclusion and Future Work
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-003-000319150