메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Koki Tomitagawa (King Mongkut"s Institute of Technology Ladkrabang) Anuntapat Anuntachai (King Mongkut"s Institute of Technology Ladkrabang) Supannada Chotiphan (King Mongkut"s Institute of Technology Ladkrabang) Olarn Wongwirat (King Mongkut"s Institute of Technology Ladkrabang) Shigeru Kuchii (National Institute of Technology (KOSEN))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
469 - 474 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Waste collection is a major concern of many companies with large areas of facility, e.g., buildings or factories, where there are many trash bins at various dumping points. Therefore, they require human labor to handle, which is a major cost of consideration. Currently, there are research works using robots for waste collection instead of humans. There is a challenge for waste collection robots in terms of energy consumption to pick up the waste at various dumping points efficiently. The factors related to the energy consumption of waste collection robots are directly related to the distance and waste weight that the robots have to collect and carry from the trash bins at various dump points along the paths. This paper presents the adapted ant colony optimization (ACO) algorithm to find the energy-efficient paths of the waste collection robots. The adapted ACO algorithm uses the waste weight in the trash bin as path heuristic information between two dumping points to determine the state transition probability for finding the most energy-efficient path. The experiment was conducted by the simulation to compare the result with the conventional ACO algorithm that uses distance as the path heuristic information. The simulation results expressed that the adapted ACO algorithm provided the most energy-efficient path under the number of nodes and waste weights specified better than the conventional ACO algorithm.

목차

Abstract
1. INTRODUCTION
2. PROPOSED ADAPTED ACO ALGORITHM
3. EXPERIMENT AND RESULTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0