메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shengli Wang (Tsinghua University) Youjiang Liu (China Academy of Engineering Physics) Yongtao Qiu (China Academy of Engineering Physics) Jie Zhou (China Academy of Engineering Physics)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,742 - 1,747 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper addresses the decentralized task allocation problem of multirobot systems, in which the objective is to maximize the total task assignments, i.e., the number of tasks that can be successfully executed by all robotic vehicles under the time constraints of tasks and battery limits of vehicles. Based on the state-of-the-art performance impact (PI) algorithm, a novel extension named PI for minimizing traveling time (PI-minTravel) is proposed in this paper. With the proposed PI-minTravel, tasks that are close enough to the last task of each vehicle are assigned to the vehicle first, so that the total traveling time of all vehicles can be minimized. Due to the limited fuel of each vehicle, less traveling time will leave more time to execute tasks, then more tasks can be executed, especially when the ratio of tasks to vehicles is high. Extensive simulation results show that the proposed PI-minTravel can assign more tasks and converge within fewer iterations compared with PI algorithm, while it can assign fewer tasks but converge within much fewer iterations compared with PI for maximizing assignments (PI-maxAss) algorithm.

목차

Abstract
1. INTRODUCTION
2. PROBLEM FORMULATION
3. PROPOSED APPROACH
4. SIMULATIONS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0