메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Zeeshan Abbas (Jeonbuk National University) Kil To Chong (Jeonbuk National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,874 - 1,877 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
N4-methylcytosine (4mC) is amongst the most significant DNA modifications and is associated with the progression of gene expression, gene differentiation, and cell proliferation. It is essential to locate their alteration sites in the genome sequences in order to understand the biological roles of 4mC. Deep learning has recently gained popularity and is widely used for the identification of 4mC sites. In this study, a convolutional neural network (CNN) based model using CapsuleNet, 4mCPred-Caps, was created to categorize 4mC sites in three different species, Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila melanogaster. Using the benchmark datasets of these species, we assessed the model performance and equate it with the previously available methodologies. We built our model using a single encoding technique called one-hot-encoding along with a special architecture called CapsuleNet. The proposed model acquired an accuracy of 84.8%, 90%, and 88.2% respectively on Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila melanogaster respectively. The outcomes demonstrate that the proposed model surpassed the currently available tools in terms of all assessment parameters. The results collected indicate that the suggested approach can be very beneficial in the area of bioinformatics.

목차

Abstract
1. INTRODUCTION
2. BENCHMARK DATASETS
3. PROPOSED METHODOLOGY
4. EVALUATION METRICS
5. RESULTS
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0