메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오윤주 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제1호
발행연도
2023.2
수록면
63 - 74 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
프라이버시 침해에 대한 안전성을 보장하기 위해 매개변수를 주고받아 학습하는 연합학습이 대두되고 있다. 하지만 최근 그래디언트를 이용하여 학습 데이터를 유출하는 논문이 발표되었다. 본 논문은 연합학습 환경에서 그래디언트를 이용하여 학습 데이터를 유출하는 실험을 구현하였으며, 학습 데이터를 유출하는 기존 공격을 개선하여 복원 성능을 높이는 방법을 제안한다. 제안 방법에 대해 Yale face database B, MNIST dataset를 이용하여 실험한 결과, 연합학습 성능이 accuracy=99~100%로 높을 때 100개의 학습 데이터 중 최대 100개의 데이터를 식별 가능한 수준으로 복원하여, 연합학습이 프라이버시 침해로부터 안전하지 않다는 것을 보인다. 또한, 픽셀 단위의 성능(MSE, PSNR, SSIM)과 Human Test에 의한 식별적인 성능을 비교함으로써 픽셀에 기반한 성능보다 식별적인 성능의 중요성을 강조하고자 한다.

목차

요약
ABSTRACT
I. 서론
II. 연구 배경
III. 연합학습에서의 복원 공격
IV. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0