메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jongho Lee (Seoul National University of Science and Technology) Hyun Kim (Seoul National University of Science and Technology)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.12 No.1
발행연도
2023.2
수록면
48 - 54 (7page)
DOI
10.5573/IEIESPC.2023.12.1.48

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep learning models for image classification with adequate parameters show excellent classification performance because they can effectively extract the features of input images. On the other hand, there is a limit to the abilities of deep learning models to interpret images using only spatial information because an image is a signal with great spatial redundancy. Therefore, in this study, the discrete cosine transform was applied to an input image in units of an N×N block size to allow the deep learning model to employ both frequency and spatial information. The proposed method was implemented and verified by selecting a vision transformer using a 16×16 nonoverlapping patch as a baseline and training various datasets of Cifar-10, Cifar-100, and Tiny-ImageNet from the very beginning without pre-trained weights. The experimental results showed that the top-1 accuracy is improved by approximately 3-5% for every dataset with little increase in computational cost.

목차

Abstract
1. Introduction
2. Background
3. Proposed Method
4. Experimental Results
5. Conclusion
References

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-000401154