메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승호 (한국기술교육대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제27권 제3호
발행연도
2023.3
수록면
356 - 362 (7page)
DOI
10.6109/jkiice.2023.27.3.356

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
얼굴인식(face recognition)은 스마트 기기의 사용자 인증, 건물 출입 통제, 지능형 감시 시스템 등에 널리 활용되는 생체인식 기술이다. 코로나19 팬데믹 이후로 마스크 착용이 일상화되면서 마스크 착용 얼굴을 식별하는 마스크 얼굴인식 연구에 대한 중요도가 높아지고 있다. 마스크 얼굴인식에서는 테스트 얼굴 이미지는 마스크 착용이 많은 반면 학습용 얼굴 이미지는 마스크 미착용이 많아서 마스크 착용 여부로 인한 불일치가 발생하고 이는 인식 정확도 저하로 이어지기 쉽다. 본 논문에서 제안하는 마스크 얼굴인식 방법은 앞서 언급한 문제를 극복하기 위해 마스크 미착용 학습용 얼굴 이미지들에 마스크를 합성하여 마스크 착용/미착용 쌍으로 증강된 학습셋을 구성한다. 그리고 마스크 착용 여부를 알 수 없는 테스트 얼굴 이미지를 마스크 착용/미착용 쌍의 학습용 얼굴 이미지들의 최적 조합으로 복원(reconstruction)한 뒤(인물 별로 수행) 복원 오류가 최소인 인물 클래스를 찾아 어떤 인물에 해당하는지 최종 판정한다. 제안하는 방법은 테스트 얼굴 이미지의 마스크 착용 여부와 관계 없이 사용할 수 있다는 장점이 있으며 마스크 착용 시 약 82%, 미착용 시 약 75%의 인식 정확도를 달성하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안하는 마스크 얼굴인식 방법
Ⅲ. 실험결과
Ⅳ. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0