메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chao Wang (College of Earth Sciences Jilin University China) Fengyue Sun (Jilin University China) Dongwei Liu (Jilin Institute of Geological Survey Changchun China) Lei Zuo (Jilin Exploration Geophysics Institute Changchun China) Tuofei Zhao (Jilin University China) Jiaming Yan (College of Earth Sciences Jilin University Changchun China)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.26 No.1
발행연도
2022.2
수록면
1 - 16 (16page)
DOI
10.1007/s12303-021-0016-4

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
High-Mg andesites (HMAs) and their cognate intrusive rocks constitute volumetrically very small proportions of the total earth, and are mainly distributed along the edges of convergent plates. Petrogenetic studies can provide possible solutions for discrepancies in the geodynamics and subduction zone evolution. This paper presents the first ever reports of the newly discovered high-Mg diorite in Akechukesai area, the western part of the East Kunlun Orogenic Belt, and provides a reference for the evolutionary history and subduction mechanism of the Proto-Tethys Ocean. Akechukesai high-Mg diorites yielded a weighted mean zircon U-Pb dating age of 427.3 ± 2.3Ma (Middle Silurian). Results of the geochemical analyses show that the high-Mg diorites were high-K calc-alkaline series with the SiO2 content ranging 50.40 to 55.41 wt%. They are characterized by high values of Mg# (67?77), high MgO (6.92?10.58 wt%), TiO2 (0.53?0.87 wt%), Cr (286?615 ppm), Ni (61?124 ppm), Ba (570?927 ppm) contents, and low FeOtotal/MgO ratios (0.54?0.89). Furthermore, they exhibit nearly flat right-declined rare-earth element (REE) patterns with slight LREE enrichment. The samples are enriched in large ion lithophile elements (e.g., Ba, Rb, and Th) and depleted in high field strength elements (e.g., Ta, Nb, and Ti). These geochemical features are analogous to the sanukitic high-Mg andesites. The mean value of the initial εHf(t) is ?1.3, indicating that the source is enriched mantle. The values of Rb/Cs, Ba/La, and La/Sm ratios suggest that subducting sediments formed an important component of the magmatic source. The presence of water-bearing minerals such as amphibole and biotite indicate a water-rich and oxygen-rich primitive magma system. Petrogenetic analysis indicates that the Akechukesai high-Mg diorites probably formed by melts and aqueous fluids produced from partial melting of the subducting sediments interacting with mantle peridotites. We hypothesize that, after the closure of the Proto-Tethys Ocean Basin in the Middle Silurian, the deep subducted slab broke-off and formed a slab window, asthenospheric material upwelled heating the subducting sediments and causing them to melt. Thus, we suggest that the emplacement of the Akechukesai high-Mg diorites mark the commencement of post-collisional magmatism.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0