메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
M. Ra’ayatpour (University of Tehran) M. Emamy (University of Tehran) J. Rassizadehghani (University of Tehran)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.28 No.3
발행연도
2022.3
수록면
679 - 694 (16page)
DOI
10.1007/s12540-020-00936-x

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The structure, hardness, tensile and wear behavior of Mg?5Sb?xSiC hybrid composites experimented where the amountof SiC particles were 1, 3, and 5 wt% SiCp before and after applying hot extrusion process. Micron size SiC particles wereadded to Mg?5Sb alloy via stir casting technique to form both Mg3Sb2and SiC particles in the as-cast microstructures. Although SiC addition reduced the grain size of the Mg?5%Sb in-situ metal matrix composite (MMC), no improvement wasobserved on ultimate tensile strength (UTS) and the ductility (EL.%) in the as-cast state. The use of the extrusion processled to a remarkable fracturing of Mg3Sb2intermetallic along the extrusion direction, grain refinement, and reduction in thesize of SiC clusters. The optimal amount of SiC was found to be 3 wt%, which reduced the grain size from ~ 827 to ~ 4 μmand promoted the UTS amounts from 120 to 244 MPa for as-cast and hot extruded composites. Besides, the enhancementof yield strength of extruded MMCs was rationalized depending on the grain size compared to the as-cast condition. Thefractography of the as-cast composites revealed more cleavage planes in contrast with hot extruded composites, which provedmuch more dimples. It was also found that the use of hard SiC particles in hybrid composite improved wear properties justin the extruded state. According to observations, in various sliding test conditions, the abrasive, oxidation and delaminationare mostly operated in combination.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0