메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Thanh-Tuan Tran (군산대학교) Kashif Salman (군산대학교) 김두기 (공주대학교)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제9호
발행연도
2021.9
수록면
3,100 - 3,111 (12page)
DOI
https://doi.org/10.1016/j.net.2021.03.017

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities)plays an essential role in seismic risk assessment. A full finite element model is often timeconsumingfor nonlinear time history analysis due to its computational modeling complexity. Thus,this study aims to generate a simplified model that can capture the nonlinear behavior of the electricalcabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffnessdegradationeffect caused by the local buckling of the structure. The inherent dynamic characteristicsof the numerical model were validated against the experimental test. The outcomes indicate that theproposed model can adequately represent the significant behavior of the structure, and it is preferred inpractice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under theinfluence of the constitutive law of material models. Three available models in OpenSees (i.e., linear,bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understatingof the seismic responses of the cabinet. It was found that the material nonlinearity, which is thefunction of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also,it showed that implementing nonlinear models reduces the seismic response of the cabinet considerablyin comparison with the linear model

목차

등록된 정보가 없습니다.

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0