메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
전보일 (평택대학교 생활 및 산업 환경R&D센터) 곽민정 (평택대학교) 강상현 (웅진코웨이(주) 환경기술연구소) 김종철 (웅진코웨이(주) 환경기술연구소) 윤현준 ((주)코웨이 환경기술연구소) 김호현 (평택대학교)
저널정보
한국환경보건학회 한국환경보건학회지 한국환경보건학회지 제46권 제4호
발행연도
2020.8
수록면
444 - 456 (13page)
DOI
10.5668/JEHS.2020.46.4.444

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: This study developed an index for the indoor air quality management of city buses to allow the provision of indoor air quality information to city bus users. Methods: Nine city buses in Seoul were measured for PM10, PM2.5, CO2, temperature, and relative humidity through IoT sensors. Big data collected through the sensors was analyzed to identify indoor air quality on city buses and graded through the index. Results: As a result of dividing the measured city bus data into five grades through the IAQ index, PM10 was rated “good” for 30.4% of the total measured values, and 9.2% were rated “risky”. For PM2.5, 67.7 percent were rated “good” and 0.4 percent were rated “risky”. For CO2, 0.9% were ‘good’ and 1.1% were ‘risky’. The results of the classification through the IAQ index for city buses showed that the impact of good, normal, sensitive, bad, and dangerous were 2.7, 38.8, 46.0, 12.4, and 0.1%, respectively. According to the analysis by measurement area, Seocho-gu, Gangnam-gu, Seongdong-gu, Gwangjin-gu, and Dobong-gu are “normal” and other areas (Seodaemoon-gu, Jongno-gu, Yongsan-gu, Jung-gu, Seongbuk-gu, Dongdaemun-gu, Junggye-gu, Gangbuk-gu, and Nowon-gu) are all rated “sensitive”. Conclusions: When analyzing cases where PM10 and CO2 indices are in the “bad” zone, the concentration is generally found to increase during rush hour, during which there are a large number of passengers. It is expected that indoor air quality management in vehicles will be necessary during rush hour.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0