메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신수용 (성균관대학교) 김헌성 (가톨릭대학교)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.36 No.44
발행연도
2021.11
수록면
1 - 11 (11page)
DOI
10.3346/jkms.2021.36.e299

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Personal medical information is an essential resource for research; however, there are laws that regulate its use, and it typically has to be pseudonymized or anonymized. When data are anonymized, the quantity and quality of extractable information decrease significantly. From the perspective of a clinical researcher, a method of achieving pseudonymized data without degrading data quality while also preventing data loss is proposed herein. As the level of pseudonymization varies according to the research purpose, the pseudonymization method applied should be carefully chosen. Therefore, the active participation of clinicians is crucial to transform the data according to the research purpose. This can contribute to data security by simply transforming the data through secondary data processing. Case studies demonstrated that, compared with the initial baseline data, there was a clinically significant difference in the number of datapoints added with the participation of a clinician (from 267,979 to 280,127 points, P < 0.001). Thus, depending on the degree of clinician participation, data anonymization may not affect data quality and quantity, and proper data quality management along with data security are emphasized. Although the pseudonymization level and clinical use of data have a trade-off relationship, it is possible to create pseudonymized data while maintaining the data quality required for a given research purpose. Therefore, rather than relying solely on security guidelines, the active participation of clinicians is important.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0