메뉴 건너뛰기
Library Notice
Institutional Access
If you certify, you can access the articles for free.
Check out your institutions.
ex)Hankuk University, Nuri Motors
Log in Register Help KOR
Subject

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data
Recommendations
Search

논문 기본 정보

Type
Academic journal
Author
Yeseul Kim (인하대학교) NO WOOK PARK (인하대학교)
Journal
The Korean Society Of Remote Sensing 대한원격탐사학회지 대한원격탐사학회지 제33권 제1호 KCI Accredited Journals
Published
2017.2
Pages
25 - 35 (11page)

Usage

cover
Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data
Ask AI
Recommendations
Search

Abstract· Keywords

Report Errors
Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models, residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

Contents

No content found

References (0)

Add References

Recommendations

It is an article recommended by DBpia according to the article similarity. Check out the related articles!

Related Authors

Recently viewed articles

Comments(0)

0

Write first comments.