메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
황범연 (광운대학교) 이상훈 (광운대학교) 이승현 (광운대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제12권 제12호
발행연도
2021.12
수록면
31 - 37 (7page)
DOI
https://doi.org/10.15207/JKCS.2021.12.12.031

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 특징 융합과 공간 강조를 적용하여 작고 페색된 객체 검출을 위한 개선된 YOLOv4S를 제안하였다. 기존 YOLOv4S은 경량 네트워크로 깊은 네트워크 대비 특징 추출 능력 부족하다. 제안하는 방법은 먼저 feature fusion으로 서로 다른 크기의 특징맵을 결합하여 의미론적 정보 및 저수준 정보를 개선하였다. 또한, dilated convolution으로 수용 영역을 확장하여 작고 폐색된 객체에 대한 검출 정확도를 향상시켰다. 두 번째로 spatial attention으로 기존 공간 정보 개선하여 객체간 구분되어 폐색된 객체의 검출 정확도를 향상시켰다. 제안하는 방법의 정량적 평가를 위해 PASCAL VOC 및 COCO 데이터세트를 사용하였다. 실험을 통해 제안하는 방법은 기존 YOLOv4S 대비 PASCAL VOC 데이터세트에서 mAP 2.7% 및 COCO 데이터세트에서 mAP 1.8% 향상되었다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0