메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정재혁 (한남대학교) 정진만 (인하대학교) 윤영선 (한남대학교)
저널정보
한국소프트웨어감정평가학회 한국소프트웨어감정평가학회논문지 한국소프트웨어감정평가학회 논문지 제17권 제2호
발행연도
2021.12
수록면
161 - 172 (12page)
DOI
10.29056/jsav.2021.12.17

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
뉴로모픽 아키텍처는 저에너지로 인공지능 기술을 지원하는 차세대 컴퓨팅으로 주목받고 있다. 그러나 뉴로모픽 아키텍처 기반의 FPGA 임베디드 보드는 크기나 전력 등으로 인하여 가용 자원이 제한된다. 본 논문에서는 제한된 자원을 효율적으로 사용하기 위해 특징점의 고려 없이 크기를 재조정하는 보간법과 에너지 기반으로 특징점을 최대한 보존하는 DCT(Discrete Cosine Transform) 기법을 통한 특징 표현 방법을 비교 및평가한다. 크기가 조정된 이미지는 일반적인 PC 환경에서와 FPGA 임베디드 보드의 Nengo 프레임워크에서컨벌루션 신경망을 통해 정확도를 비교 분석했다. 실험 결과 PC의 컨벌루션 신경망과 FPGA Nengo 환경 모두에서 DCT 기반 분류 성능이 일반 보간법보다 약 1.9% 높은 성능을 보였다. 실험 결과를 바탕으로 뉴로모픽 구조 기반 FPGA 보드의 제한된 자원 환경에서 기존에 사용되던 보간법 대신 DCT 방식을 이용한다면 분류에 사용되는 뉴런의 표현에 많은 자원을 할당하여 인식률을 높일 수 있을 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0