메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한승훈 (상명대학교) 조승철 (상명대학교)
저널정보
한국인터넷윤리학회 디지털 윤리 The Digital Ethics(디지털 윤리) 제2권 제2호
발행연도
2018.12
수록면
114 - 120 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
IT technology works extensively as an essential part of our lives. We have reached not only the use of simple search engines and social networking services, but also the use of services in the form of the Internet of Things. These services require the user's personal information to perform each function and agree to the terms and conditions of the use of the service if desired. The above consent system is a system that is implemented specifically by the Privacy Act to guarantee the right to decide personal information on the subject. In that respect, the consent system and the right to personal information self-determination are closely related and in principle justified. However, users do not read the terms and conditions of use, which results in a lack of privacy paradoxes, or incentives to deliberate. This can cause problems such as personal information leakage and illegal transactions and lead to direct and indirect damage to the information subject's property. In response, the study proposed dynamic mark, scoring system, certification mark, and terms and conditions wikipedia, which were the most useful methods of self-determination through privacy nutting, and surveyed 50 students. The results showed a high preference for the so-called "certification mark" method, which presents and certifies various information needed by information entities such as the government, such as 'N consecutive years of personal information fair trade', unlike the existing mark. On the other hand, the opinion of the public, which is considered to be low-professional, was found to have a low preference for the system or Wikipedia-based measures.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0