메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jang Il Moon (Icahn School of Medicine at Mount Sinai) Huaibin M Ko (Department of Pathology Icahn School of Medicine at Mount Sinai New York NY USA) Kishore R Iyer (Icahn School of Medicine at Mount Sinai)
저널정보
대한이식학회 Clinical Transplantation and Research Korean Journal of Transplantation Vol.35 No.4
발행연도
2021.12
수록면
230 - 237 (8page)
DOI
10.4285/kjt.21.0028

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: The presence of preformed donor-specific antibodies in recipient serum against anti-human leukocyte antigen is a significant risk factor that negatively affects the outcomes of intestinal transplantation. Avoiding high-risk intestinal transplantation by physical and virtual cross matches has had limited success due to time constraints and ineffective correlation, respectively. Methods: We developed a guideline to improve the association between physical and virtual cross matches using the retrospective data of 56 consecutive primary adult isolated intestinal transplantations from a single center. Results: The mean fluorescence intensity of 2,000 for positive donor-specific antibodies revealed the best association between physical and virtual cross matches among different cut-off values, but with an unacceptable false positive rate of 54%. An enhanced virtual cross match with the summation of the mean fluorescence intensity of each anti- human leukocyte antigen improved the association between physical and virtual cross matches, with a sensitivity of 83% and specificity of 98%. Conclusions: This enhanced virtual cross match more effectively predicts high-risk intestinal transplantation and is a better substitute for physical cross-match than the current virtual cross match. It also helps to avoid ill-considered abandonment of intestinal transplantation that is unnecessarily deemed high risk based on a simple virtual cross match.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0