메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이도형 (Korea Trade and Investment Promotion Agency (KOTRA))
저널정보
한국무역연구원 무역연구 무역연구 제17권 제4호
발행연도
2021.8
수록면
19 - 36 (18page)
DOI
http://dx.doi.org/10.16980/jitc.17.4.202108.19

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose With the digitalization of trade becoming a hot topic again in the international trade sector, this study aimed to present policy implications for expanding digital trade by exploring the current status of Korean small and medium-sized enterprises (SMEs). Design/Methodology/Approach Based on a literature review and available statistical data, the trend of global trade digitalization was theoretically considered. On the other hand, the current status of digital trade was analyzed empirically based on a survey of Korean SMEs. Findings Digitalization of trade brings an opportunity for small and medium-sized companies, relatively weak in competitiveness, such as lack of information on overseas market and inferiority in overseas marketing capabilities. Specifically, the empirical analysis shows that companies have extensive experience in digital trade and online domestic sales in Korea and transaction experience through B2C online platforms account for a higher share of total sales or exports than companies with low digital readiness. Research Implications First, continuous policy attention and efforts are needed to build a digital trade environment so that SMEs can naturally become accustomed to digital trade. Second, the government’s digital export support programs targeting SMEs should ultimately be centered on B2B transactions. Finally, intelligent digital export support programs are required by items suitable for digital trade through the integrated management of the transaction and transaction history of the export promotion agencies.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0