메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김미지 (영산대학교 미용예술대학원) 김양양 (영산대학교 미용예술대학원) 한채정 (영산대학교)
저널정보
한국미용학회 한국미용학회지 한국미용학회지 제21권 제5호
발행연도
2015.10
수록면
989 - 998 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study was to examine the influence of Chinese women's preference for the Korean wave and their considerations for advertising attributes on satisfaction level with the purchase of Korean cosmetics and loyalty for these products in an effort to provide the Korean cosmetic industry with useful information on product planning and advertising strategy setting. The subjects in this study were the female Chinese tourists visiting Korea and the female Chinese employees of PwC, a multinational company in Shanghai, China. A total of 473 questionnaires were collected and used for final analysis. For analysis, One-way ANOVA, t-test, Correlation and Regression were performed using SPSS 21.0 for Windows. Then, the study results found the following. First, the Chinese women expressed a lot of satisfaction with their purchase of Korean cosmetics, and their purchase loyalty for these products was strong as well. Second, a higher preference for the Korean wave led to more purchase satisfaction and stronger purchase loyalty for Korean cosmetics. Third, as for advertising attributes, the Chinese women who took more considerations on ad image and ad phrase were more satisfied with their purchase of Korean cosmetics, and more considerations on ad image and advertising liking were followed by stronger purchase loyalty for Korean cosmetics. Therefore the Korean wave should be more strengthened to boost purchase satisfaction and loyalty for Korean cosmetics, and what advertising attributes Chinese women attach importance to should be grasped in detail to improve the effect of advertising.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0