메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Desy Nuryunarsih (Glasgow Caledonian University) Okatiranti Okatiranti (University of Nottingham) Lucky Herawati (Yogyakarta Health Polytechnic)
저널정보
환경독성보건학회 Environmental Analysis Health and Toxicology Environmental Analysis Health and Toxicology Vol.38 No.1
발행연도
2023.3
수록면
20 - 27 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Health professionals (HPs) can play an important role in influencing the smoking behavior of their patients and the implementation of smoke-free workplace policies. In some countries physicians and dentists may not have a no-smoking policy in place. Breathing in other people’s tobacco smoke (second-hand smokers) increase the risk of smoking related diseases. Environmental Tobacco smoke ETS causes a similar range of diseases to active smoking, including various cancers, heart disease, stroke, and respiratory diseases. Little is known about the smoking-related attitudes and clinical practices of HPs in Indonesia. Evidence suggests that high smoking rates remain among male HPs; however, the risk perceptions and attitudes to smoking among Indonesian HPs have not been investigated using prediction model artificial neural networks. For this reason, we developed and validated an artificial neural network (ANN) to identify HPs with smoking behavior. The study population consisted of 240 HPs, including 108 (45%) physicians, and 132 (55%) dentists, with more female (n=159) than male participants (n=81) for both professions. Participants were randomly divided into two sets, the training (192) and test (48) sets. The input variables included gender, profession (doctor or dentist), knowledge regarding smoking-related diseases and awareness of smoking provided to their patients, smoke-free policy in place at their workplace, and smoking status. ANN was constructed with data from the training and selection sets and validated in the test set. The performance of ANN was simultaneously evaluated by discrimination and calibration. After the training, we completed the process using the test dataset with a multilayer perceptron network, determined by 36 input variables. Our results suggested that our final ANN concurrently had good precision (89%), accuracy (81%), sensitivity (85%), and area under the curve (AUC; 70%). ANN can be used as a promising tool for the prediction of smoking status based on health risk perceptions of HPs in Indonesia.

목차

Abstract
Introduction
Materials and Methods
Results and Discussion
Conclusions
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-539-001465747