메뉴 건너뛰기
내서재 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추세 제거된 시계열을 이용한 단위근 식별
추천
검색
질문

Determining the existence of unit roots based on detrended data

논문 기본 정보

자료유형
학술저널
저자정보
나옥경 (경기대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제34권 제2호 KCI등재
발행연도
2021.4
수록면
205 - 223 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
추세 제거된 시계열을 이용한 단위근 식별
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
논문에서는 adaptive lasso 방법을 이용하여 단위근의 존재 여부를 판단하는 방법에 대해 연구하였다. 최근 원 시계열에 상수항과 선형 추세가 포함된 ADF-회귀모형식을 adaptive lasso로 추정하여 단위근을 식별하는 방법이 제안되었으나, 미지의 선형 추세가 존재할 때 검정력이 떨어지는 것으로 나타났다. 이 문제를 해결하기 위해 본 논문에서는 ADF-회귀모형식을 적합시킬 때 원 시계열 대신 선형 추세가 제거된 시계열을 사용하는 수정안을 제안하였다. 그리고 수정안에서는 일차적으로 선형 추세를 제거한 후 모형식을 적합시키기 때문에 ADF-회귀모형식 중 상수항과 선형 추세를 모두 포함하지 않는 모형식을 사용하였다. 기존의 방법보다 수정안을 사용할 때 단위근의 존재를 판단하는 검정력이 향상되는지 모의실험을 통해 검토하였으며, ADF 검정과 DF-GLS 검정과의 비교 실험도 진행하였다. 모의실험 결과 adaptive lasso를 이용하여 단위근의 존재를 판단할 때 원 시계열보다 추세가 제거된 시계열을 사용하는 경우가 높은 정확도를 가지며, 자료의 개수가 충분히 많을 때 단위근을 잘 판단함을 확인할 수 있었다.

목차

Abstract
1. 서론
2. 단위근의 식별
3. 모의실험
4. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

댓글(0)

0

첫번째 댓글을 남겨주세요.