메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Min-Seok Shin (Yeungnam University) Ji-Eun Jang (Yeungnam University) Jea-Young Lee (Yeungnam University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제28권 제4호
발행연도
2021.7
수록면
339 - 350 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In medical research, the risk factors associated with human diseases need to be identified to predict the incidence rate and determine the treatment plan. Logistic regression analysis is primarily used in order to select risk factors. However, individuals who are unfamiliar with statistics outcomes have trouble using these methods. In this study, we develop a nomogram that graphically represents the numerical association between the disease and risk factors in order to identify the risk factors for delirium and to interpret and use the results more effectively. By using the logistic regression model, we identify risk factors related to delirium, construct a nomogram and predict incidence rates. Additionally, we verify the developed nomogram using a receiver operation characteristics (ROC) curve and calibration plot. Nursing home, stroke/epilepsy, metabolic abnormality, hemodynamic instability, and analgesics were selected as risk factors. The validation results of the nomogram, built with the factors of training set and the test set of the AUC showed a statistically significant determination of 0.893 and 0.717, respectively. As a result of drawing the calibration plot, the coefficient of determination was 0.820. By using the nomogram developed in this paper, health professionals can easily predict the incidence rate of delirium for individual patients. Based on this information, the nomogram could be used as a useful tool to establish an individual’s treatment plan.

목차

Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001432516