메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박종선 (성균관대학교) 이명규 (성균관대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제6호
발행연도
2019.12
수록면
899 - 908 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
수 많은 모수들을 가지고 있는 방대한 심층신경망은 매우 강력한 기계학습 방법이지만 모형의 과도한 융통성으로 인하여 과적합문제를 내포하고 있다. 드롭아웃 방법은 크기가 큰 신경망의 과적합 문제를 해결하는 다양한 방법들 중 하나이며 매우 효과적인 방법으로 알려져 있다. 드롭아웃 방법은 훈련과정에서 각각의 표본에 다른 모형을 적용하는데 이들 모형은 입력과 은닉층의 노드들을 무작위로 제거한 모형들 중에 임의로 선택된다. 본 연구에서는 임의로 선택된 모형에 둘 이상의 표본을 적용하여 모형의 가중치들에 대한 추정치의 안정성을 높이는 하이브리드 드롭아웃 방법을 제시하였다. 실제 자료를 이용한 시뮬레이션 결과 노드의 선택확률과 모형의 적합에 사용되는 표본의 수를 적절하게 선택하여 기존의 방법에 비하여 추정치의 변동성이 감소시킬 수 있었으며 동시에 검증자료에 대한 최저오차도 줄일 수 있음을 보였다.

목차

Abstract
1. 서론
2. 하이브리드(hibrid) 드롭아웃
3. 모의실험
4. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001440752