메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
白恩姬 (仁荷大学)
저널정보
한국중어중문학회 한국중어중문학 우수논문집 2021 한국중어중문학 우수논문집
발행연도
2022.11
수록면
169 - 181 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The relative structure is the one in which the relative clause is backgrounded and the head noun is foregrounded to be promoted to the matrix sentence. Therefore, the relative structure in which the relative clause includes the subject - old information, and the head noun is relativised object - new information is the unmarked information structure of the Chinese sentence. On the other hand, the relative structure in which the relative clause includes the object - new information, and the head noun is relativised subject - old information is the marked information structure. This explains why the frequency of emergence of relative structures with relativised objects is much higher than that of relative structures with relativised subjects.
The relative structure is rarely used as the subject of a transitive verb, and is mainly used as the object of a transitive verb or the subject of an intransitive verb. This can be explained in that the object of the transitive verb and the subject of the intransitive verb are generally new information, and the subject of the transitive verb is mainly old information. While old information is mainly expressed by pronouns, new information is introduced by lexical nouns, so the relative structure that adds lexical information about head nouns is suitable for delivering new information. Therefore, it appears mainly in locations that require new information, such as the object of a transitive verb or the subject of the intransitive verb, and is rarely used as the subject of the transitive verb.

목차

1. 序言
2. 可及性等级和汉语的关系化策略
3. 汉语关系从句结构的關係化成分
4. 汉语关系从句结构在主句中的功能
5. 结语
參考文獻
Abstract

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-820-001462908