메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국환경과학회 한국환경과학회지 한국환경과학회지 제26권 제8호
발행연도
2017.8
수록면
955 - 966 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/ stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-451-001797192