메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
임미홍 (한국한의학연구원)
저널정보
한국정보기술학회 Proceedings of KIIT Conference 한국정보기술학회 2023년도 하계종합학술대회 및 대학생논문경진대회
발행연도
2023.6
수록면
1 - 4 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
다양한 종류의 정형 또는 비정형 데이터를 머신러닝이나 딥러닝 기반으로 분석하여 결과를 해석하고 미래를 예측하는 과정은 4차 산업혁명 시대의 핵심기술 중 하나이다. 본 연구는 기계학습 기반으로 비침습적 생체지표들을 이용하여 적극적인 혈당 관리를 필요로 하는 당뇨 및 공복혈당 장애 분류 모델을 생성하고 성능을 비교하는 것을 목적으로 한다. 총 215명의 40세 이상 69세 미만의 여성을 대상으로 6개의 기계학습 알고리즘 (elastic net, k-nearest neighbor, random forest, support vector machine, extreme gradient boosting, and neural network)을 이용하여 모델을 생성하고 중첩 교차검증(nested cross-validation)을 사용하여 성능을 비교하였다. 그 결과 엘라스틱넷 로지스틱 회귀분석의 성능이 다소 높게 나타났다. 이 연구 결과는 당뇨 및 공복혈당 장애 분류를 위한 비침습적 변수의 가능성을 보여주었다. 또한 기계학습 알고리즘을 사용한 분류는 임상의가 통찰력을 얻고 임상 결정을 내리는 데 공헌할 것으로 예상된다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 방법
Ⅲ. 결과
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0