메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태헌 (Seoul National University of Science and Technology) 허재원 (Seoul National University of Science and Technology) 한유경 (Seoul National University of Science and Technology)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제41권 제4호
발행연도
2023.8
수록면
217 - 225 (9page)
DOI
10.7848/ksgpc.2023.41.4.217

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
고해상도 위성영상 활용을 위해서는 상호등록을 수행하여 영상 간 좌표를 통일하는 과정이 필수적으로 수행되어야 한다. 본 연구에서는 self-supervised learning 방식의 딥러닝 네트워크를 통해 추출된 정합점을 기반으로 고해상도 위성영상 간 좌표를 통일하는 상호등록 방법론을 제안한다. 먼저, 특징점의 전반적인 특성을 학습시키기 위해 Synthetic shape dataset을 이용하여 MagicPoint detector를 구축한다. 다양한 고해상도 원격탐사 오픈소스 데이터를 MagicPoint detector에 입력하여 추출된 특징점을 이용하여 MagicPoint detector를 고도화한다. 고도화된 MagicPoint detector를 이용하여 고해상도 위성영상 내 pseudo-label을 생성하며, 이때 homographic adaptation을 적용하여 다양한 기하학적 환경을 고려한다. pseudo-label과 고해상도 위성영상 데이터를 기반으로 SuperPoint detector를 구축한다. 제안방법을 통해 추출된 정합점을 기반으로 구성된 비선형 변환모델을 이용하여 상호등록을 수행한다. 대전광역시를 대상으로 취득된 KOMPSAT-3 영상을 이용하여 실험한 결과, 제안기법은 다수의 정합점을 중첩영역에 대해 균등하게 추출하였으며, 상호등록 정확도는 RMSE (Root Mean Square Error) 1.563 pixels 그리고 CE90 (Circular Error 90%) 1.971 pixels로 측정되었다. 이를 통해, 제안기법은 고해상도 위성영상 특성을 반영한 정합점을 효과적으로 추출할 수 있어 상호등록 정확도 개선에 이바지할 수 있을 것으로 사료된다.

목차

Abstract
초록
1. 서론
2. 연구 방법
3. 실험 결과 및 분석
4. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-533-002038237