메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
성열우 (남서울대학교) 수라폰논상 (남서울대학교) 안기택 (전북대학교) 김정길 (남서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제29권 제9호
발행연도
2023.9
수록면
427 - 431 (5page)
DOI
10.5626/KTCP.2023.29.9.427

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥러닝을 이용한 자연어처리 분야에서 다양한 모델이 소개되는 가운데 BERT와 GPT 등 트랜스포머(Transformer) 기반의 사전훈련 언어모델(Pre-trained model)이 기본이 되고 있다. 트랜스포머 기반 모델의 파인-튜닝(Fine-tuning)은 전체 모델의 파라미터가 업데이트되어 우수한 성능을 보여주고 있다. 최근에는 적은 양의 파라미터를 업데이트하여 성능을 개선하는 P-tuning 방식이 등장하였다. 본 논문에서는 모델의 파라미터의 학습을 동결하여 적은 양의 파라미터만 업데이트하더라도 기존의 파인-튜닝과 비슷한 성능을 달성할 수 있는 피-튜닝 방식에서 프롬프트 인코더(Prompt-encoder)를 변경한 방법을 제안하였다. 성능 검증을 위하여 GPT-2 모델은 KoGPT2를 사용하였다. NSMC와 KorNLI 데이터셋을 이용한 분류 결과, 제안한 방법은 기존의 피-튜닝 방식과 비교하여 NSMC와 KorNLI 데이터셋으로 각각 4.56%와 11%의 정확도가 향상된 성능 향상 결과를 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 모델
4. 성능 검증
5. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-569-002047801