메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유승민 (성균관대학교) 이하윤 (성균관대학교) 신동군 (성균관대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.9
발행연도
2023.9
수록면
729 - 736 (8page)
DOI
10.5626/JOK.2023.50.9.729

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
개인 맞춤형 추천 시스템은 일상에 녹아 들어있다. 하지만 딥 러닝 기반 추천 시스템 모델에서 임베딩 레이어는 과거 유저가 상호 작용하는 아이템 수가 늘어남에 따라, 임베딩 테이블의 메모리 사용량이 늘어 산업용 AI 데이터 센터의 리소스 대부분을 차지하고 있다. 이 문제를 극복하기 위한 해결책 중 하나는 심층 신경망에서 유망한 압축 기법인 Tensor-Train (TT) 분해이다. 본 연구에서는 TT-분해 기법이 적용된 임베딩 레이어의 연산인 Tensor-Train Gather and Reduce (TT-GnR)에서 발생하는 불필요한 연산에 관해 분석하고 이를 해결하기 위해 아이템 벡터들을 하나로 묶는 연산 단위인 그룹을 정의하고 그룹 단위로 연산하여 불필요한 연산을 줄이는 Group Reduced TT-Gather and Reduce (GRT-GnR) 연산을 제안한다. 실험을 통해 기존 TT-GnR 연산에 비해 latency가 41% 감소한다.

목차

요약
Abstract
1. 서론
2. 배경
3. Tensor-Train 임베딩 레이어
4. 그룹 단위의 TT-임베딩 레이어 연산
5. 실험
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-569-002049310