메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박형석 (우송대학교) 구본우 (우송대학교) 한태우 (우송대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제36권 제2호
발행연도
2023.6
수록면
79 - 88 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the development of Deep Learning (DL), artificial intelligence (AI) models are being created and used in various fields today. Today, with the development of computers and DL algorithms, DL-based AI models can learn a lot of data and find rules by themselves. DeepMind's Alphago shows the possibility of self-determination of game rules and high-level game play with only learning data. Although these various DL algorithms are applied to the game field, there are limits to successful play with only a single AI model in areas where team tactics and individual play coexist, such as sports games. Today, high-quality sports games are readily available. However, game AI researchers may need to receive game code sources or provide test simulators from game companies in order to develop AI models suitable for such high-quality sports games. In order for game AI researchers to develop AI models in the field of active sports games, a test environment that reflects the rules and characteristics of sports games and is easy to access is required. In this paper, we propose a rule-based soccer game framework that can create and test AI models in sports games where team tactics and individual play are important

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0