메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
송호종 (금오공과대학교) 김태성 (금오공과대학교) 정구상 (Conception Co. Ltd) 전진웅 (Conception Co. Ltd)
저널정보
아태인문사회융합기술교류학회 아시아태평양융합연구교류논문지 아시아태평양융합연구교류논문지 제9권 제3호
발행연도
2023.3
수록면
1 - 10 (10page)
DOI
http://dx.doi.org/10.47116/apjcri.2023.03.01

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
One of the additive manufacturing processes that is quickly evolving is metal 3D printing. Selective laser melting (SLM) is one of the popular methods for metal 3D printing. Although it has many advantages and capabilities, there are still unsolved problems like process monitoring and printing reliability. Printing high-quality robust products require appropriate parameter settings and real-time monitoring. In order to satisfy the requirement, we propose a new monitoring system based on multiple sensors that can measure the index of different quality affecting parameters of SLM 3D printing. The system serves to improve printing quality; it involves supervised machine learning to predict the expected tensile strength of the printed product. We trained the machine learning model on our new “tensile strength” dataset which includes multiple sensing data and indexes of tensile strength. While collecting data we printed products that have a tensile strength between 449 and 506 MPa. A number of SLM 3D printing tests are carried out to show the viability of the proposed approach. After testing the tensile strength of the printed product, test results were compared to the results of the tensile strength predicting model. According to experiments, the monitoring system showed satisfactory results predicting expected tensile strength. The highest accuracy has been achieved with Multiple Linear Regression, recording 97%. The monitoring system helps not only to predict the tensile strength of the printing product but also to find optimal parameter settings of the SLM printer.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0