메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이상호 (애나) 손일락 (애나) 정규호 (애나) 박노삼 (한국전자통신연구원)
저널정보
ICT플랫폼학회 JOURNAL OF PLATFORM TECHNOLOGY JOURNAL OF PLATFORM TECHNOLOGY Vol.11 No.5
발행연도
2023.10
수록면
110 - 125 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 2019년 국내 공항을 기준으로 측정된 시계열 항공기 위치 데이터를 활용하여 국내 공항에 이착륙 시 접근 단계에서의 항공 위험상황 중 Go-Around 및 UOC_D 를 분석하고, 다양한 클러스터링 기반 머신 러닝 기법을 적용하여 국내 항공 데이터에서 가장 알맞은 분석 기법이 무엇인지를 실험을 통해 제시한다. 항공기 위치를 측정하기 위한 센서는 ADS-B를 단일로 사용하였으며, 클러스터링 기법들 중 K-Means, GMM, DBSCAN 등의 알고리즘을 사용하여 이상상황을 분류하기 위한 모델을 설계하였다. 그 중 해외에서는 RF 모델이 가장 나은 성능을 보였으나, 국내 항공 데이터에 대해서는 국내 지형에 특화된 부분을 반영한 GMM이 가장 높은 분류 성능을 보이는 것으로 실험을 통해 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 사전 연구
Ⅲ. 국내 항공 데이터 특성
Ⅳ. 국내 항공 이착륙 환경에서의 항공기 이상 징후
Ⅴ. 머신러닝 기반 항공 이상상황 분석 모델 성능 실험 및 결과
Ⅵ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088247656