메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hongsuk Kim (Kookmin University) Yongseong Lee (Kookmin University) Jangho Shin (Hyundai Motor Company) Jong-Chan Kim (Kookmin University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
605 - 609 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to the unprecedented computing requirement of autonomous driving applications, in-vehicle computing architecture is going under tremendous changes. For that, emerging computing units such as graphics processing units (GPUs) and neural processing units (NPUs) are employed, trying to satisfy such computing requirement. However, since the computing power of a single node is inherently limited, we cannot scale up beyond a single node’s computing capacity. To make a scalable computing architecture for computing-hungry applications, we propose to employ the cluster-based computing architecture that has been used in server-side applications for decades. As an initial effort, we develop a prototype object detection system by clustering three compute nodes equipped with an Nvidia SoC with an integrated GPU, connected through an ethernet bus and a CAN bus. A GigE Vision camera is connected to the ethernet bus and multicasts images to the three nodes. For each node to select its assigned images in a round-robin manner, a distributed consensus scheme is proposed. Our prototype implementation demonstrates a linear scalability of its frame rate up to three nodes with no additional delay overhead caused by the clustering architecture. By that, this study shows the potential of the cluster system for autonomous driving applications.

목차

Abstract
1. INTRODUCTION
2. BACKGROUND
3. SYSTEM DESIGN
4. EXPERIMENTS
5. RELATED WORK
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088264666