메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hounghun Joe (Kwangwoon University) Youngmin Kim (Hongik University)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.20 No.5
발행연도
2020.10
수록면
436 - 446 (11page)
DOI
10.5573/JSTS.2020.20.5.436

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Stochastic computing, an approximate computing method using bitstreams, has attracted attention as an alternative to deterministic computing. Stochastic computing circuits are known to perform complex calculations with high density through probability calculations. Herein, we describe the design of an accurate and compact arithmetic circuit based on stochastic computing. First, we propose a simple technique to change the output of a random number generator that is an integral part of stochastic computing for stochastic multipliers and adders. Compared with conventional designs, the results indicate that the proposed design reduces power and area and enhances the performance. This method uses a fully connected cube network and does not lose accuracy without overhead. Subsequently, when applying this design to image processing in the real world, a 63% area reduction and 95% power savings are achieved when compared to an accurate operator. Therefore, it is clear that the proposed design is optimized for energy-efficient hardware designs with high imprecision tolerance.

목차

Abstract
I. INTRODUCTION
II. PRELIMINARY
III. STOCHASTIC NUMBER GENERATION BASED ON FULLY-CONNECTED CUBE NETWORK
IV. EDGE DETECTION WITH A PROPOSED STOCHASTIC COMPUTING
V. CONCLUSIONS
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0