메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yong-Wan Kwon (Pusan National University) Dong-Joong Kang (Pusan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
920 - 923 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Anomaly detection has been an actively researched field, particularly in the context of industrial automation. In recent years, significant efforts have been made towards reconstruction-based approaches for anomaly detection. This method involves using a model trained on normal data patterns to generate reconstructions of given data, and then evaluating the difference between this input and the model"s reconstruction to detect anomalies. However, in practice, models often struggle to control the generalization boundary or encounter ambiguity, resulting in inadequate separation between normal and abnormal instances or performance degradation due to overfitting. To address these challenges, this paper proposes a process that applies noise to normal images and reconstructs them into normal images. The proposed method learns patterns of normal images through a reconstruction-based network, allowing for the detection of anomalies by comparing input images with their reconstructed counterparts. Additionally, various normalization techniques are explored to improve the performance of the network. The effectiveness of our approach is demonstrated through superior performance on the MVTec AD benchmark, providing opportunities for early detection and intervention in potential anomaly situations in real-world applications.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENT
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265136